Selective inhibition of glycolysis in hepatic stellate cells and suppression of liver fibrogenesis with vitamin A-derivative decorated camptothecin micelles

维生素 A 衍生物修饰的喜树碱胶束选择性抑制肝星状细胞糖酵解并抑制肝纤维化

阅读:6
作者:Li Xiang, Xin Wang, Qiangqiang Jiao, Yaru Shao, Rui Luo, Jie Zhang, Xiaotong Zheng, Shaobing Zhou, Yuping Chen

Significance

Our work introduces an innovative antifibrotic drug system that is developed upon the active targeting of CPT and aims for the fate reversal of HSCs. Through HSC-targeted delivery achieved by PEG-PCL polymeric micelles decorated with vitamin A-derivatives, CPT significantly suppressed the expressions of HIF-1α and glycolytic enzymes in MF-HSCs, as well as their pathologic expansion in mouse livers. It effectively ameliorated chronic liver fibrosis in mice induced by CCl4 injection or BDL and restored the damaged liver structure and function. These compelling findings demonstrate the therapeutic potential of glycolytic HSC-targeting in combating fibrosis and related disorders and thus provide new promise for future clinical management of such prevalent and life-threatening conditions.

Statement of significance

Our work introduces an innovative antifibrotic drug system that is developed upon the active targeting of CPT and aims for the fate reversal of HSCs. Through HSC-targeted delivery achieved by PEG-PCL polymeric micelles decorated with vitamin A-derivatives, CPT significantly suppressed the expressions of HIF-1α and glycolytic enzymes in MF-HSCs, as well as their pathologic expansion in mouse livers. It effectively ameliorated chronic liver fibrosis in mice induced by CCl4 injection or BDL and restored the damaged liver structure and function. These compelling findings demonstrate the therapeutic potential of glycolytic HSC-targeting in combating fibrosis and related disorders and thus provide new promise for future clinical management of such prevalent and life-threatening conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。