DNA Aptamers Targeting BACE1 Reduce Amyloid Levels and Rescue Neuronal Deficiency in Cultured Cells

靶向 BACE1 的 DNA 适体可降低培养细胞中的淀粉样蛋白水平并挽救神经元缺陷

阅读:6
作者:Jun Xiang, Wen Zhang, Xiao-Fang Cai, Min Cai, Zhong-Hai Yu, Feng Yang, Wen Zhu, Xiang-Ting Li, Ting Wu, Jing-Si Zhang, Ding-Fang Cai

Abstract

β-amyloid (Aβ) plays an essential role in the pathogenesis of Alzheimer's disease (AD). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is indispensable for Aβ production, and knockout of BACE1 has no overt phenotypes in mouse. Thus, fine modulation of BACE1 may be a safe and effective treatment for AD patients. However, the large active site of BACE1 makes it challenging to target BACE1 with classical small-molecule inhibitors. DNA aptamer can have high affinity and specificity against diverse targets, and it provides an alternative strategy to target BACE1. In this study, we used a novel cell-systematic evolution of ligands by exponential enrichment (SELEX) strategy to select specific DNA aptamers optimized to target BACE1 under physiological status. After 17 rounds of selection, we identified two DNA aptamers against BACE1: BI1 and BI2. The identified aptamers interacted with BACE1 in pull-down assay, inhibited BACE1 activity in in vitro fluorescence resonance energy transfer (FRET) assay and HEK293-APP stable cell line, reduced Aβ in the culture medium of HEK293-amyloid protein precursor (APP) stable cell line and APP-PS1 primary cultured neurons, and rescued Aβ-induced neuronal deficiency in APP-PS1 primary cultured neurons. In contrast, the identified aptamers had no effect on α- or γ-secretase. In addition, cholesteryl tetraetylene glycol (TEG) modification further improved the potency of the identified aptamers. Our study suggests that it is feasible and effective to target BACE1 with DNA aptamers, and the therapeutic potential of the identified aptamers deserves further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。