Mitochondrial Targeting of Antioxidants Alters Pancreatic Acinar Cell Bioenergetics and Determines Cell Fate

抗氧化剂的线粒体靶向作用可改变胰腺腺泡细胞的生物能量学并决定细胞命运

阅读:9
作者:Jane A Armstrong, Nicole J Cash, Jack C Morton, Alexei V Tepikin, Robert Sutton, David N Criddle

Abstract

Mitochondrial dysfunction is a core feature of acute pancreatitis, a severe disease in which oxidative stress is elevated. Mitochondrial targeting of antioxidants is a potential therapeutic strategy for this and other diseases, although thus far mixed results have been reported. We investigated the effects of mitochondrial targeting with the antioxidant MitoQ on pancreatic acinar cell bioenergetics, adenosine triphosphate (ATP) production and cell fate, in comparison with the non-antioxidant control decyltriphenylphosphonium bromide (DecylTPP) and general antioxidant N-acetylcysteine (NAC). MitoQ (µM range) and NAC (mM range) caused sustained elevations of basal respiration and the inhibition of spare respiratory capacity, which was attributable to an antioxidant action since these effects were minimal with DecylTPP. Although MitoQ but not DecylTPP decreased cellular NADH levels, mitochondrial ATP turnover capacity and cellular ATP concentrations were markedly reduced by both MitoQ and DecylTPP, indicating a non-specific effect of mitochondrial targeting. All three compounds were associated with a compensatory elevation of glycolysis and concentration-dependent increases in acinar cell apoptosis and necrosis. These data suggest that reactive oxygen species (ROS) contribute a significant negative feedback control of basal cellular metabolism. Mitochondrial targeting using positively charged molecules that insert into the inner mitochondrial member appears to be deleterious in pancreatic acinar cells, as does an antioxidant strategy for the treatment of acute pancreatitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。