Methodological Development of a Multi-Readout Assay for the Assessment of Antiviral Drugs against SARS-CoV-2

用于评估抗 SARS-CoV-2 抗病毒药物的多读数检测方法的开发

阅读:6
作者:Friedrich Hahn, Sigrun Häge, Alexandra Herrmann, Christina Wangen, Jintawee Kicuntod, Doris Jungnickl, Julia Tillmanns, Regina Müller, Kirsten Fraedrich, Klaus Überla, Hella Kohlhof, Armin Ensser, Manfred Marschall

Abstract

Currently, human infections with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are accelerating the ongoing spread of the pandemic. Several innovative types of vaccines have already been developed, whereas effective options of antiviral treatments still await a scientific implementation. The development of novel anti-SARS-CoV-2 drug candidates demands skillful strategies and analysis systems. Promising results have been achieved with first generation direct-acting antivirals targeting the viral polymerase RdRp or the protease 3CLpro. Such recently approved or investigational drugs like remdesivir and GC376 represent a basis for further development and optimization. Here, we establish a multi-readout assay (MRA) system that enables the antiviral assessment and mechanistic characterization of novel test compounds, drug repurposing and combination treatments. Our SARS-CoV-2-specific MRA combines the quantitative measurement of several parameters of virus infection, such as the intracellular production of proteins and genomes, enzymatic activities and virion release, as well as the use of reporter systems. In this regard, the antiviral efficacy of remdesivir and GC376 has been investigated in human Caco-2 cells. The readouts included the use of spike- and double-strand RNA-specific monoclonal antibodies for in-cell fluorescence imaging, a newly generated recombinant SARS-CoV-2 reporter virus d6YFP, the novel 3CLpro-based FRET CFP::YFP and the previously reported FlipGFP reporter assays, as well as viral genome-specific RT-qPCR. The data produced by our MRA confirm the high antiviral potency of these two drugs in vitro. Combined, this MRA approach may be applied for broader analyses of SARS-CoV-2-specific antivirals, including compound screenings and the characterization of selected drug candidates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。