Understanding the Intrinsic Carrier Transport in Highly Oriented Poly(3-hexylthiophene): Effect of Side Chain Regioregularity

理解高取向聚(3-己基噻吩)中的本征载流子传输:侧链区域规整性的影响

阅读:8
作者:Sanyin Qu, Chen Ming, Qin Yao, Wanheng Lu, Kaiyang Zeng, Wei Shi, Xun Shi, Ctirad Uher, Lidong Chen

Abstract

The fundamental understanding of the influence of molecular structure on the carrier transport properties in the field of organic thermoelectrics (OTEs) is a big challenge since the carrier transport behavior in conducting polymers reveals average properties contributed from all carrier transport channels, including those through intra-chain, inter-chain, inter-grain, and hopping between disordered localized sites. Here, combining molecular dynamics simulations and experiments, we investigated the carrier transport properties of doped highly oriented poly(3-hexylthiophene) (P3HT) films with different side-chain regioregularity. It is demonstrated that the substitution of side chains can not only take effect on the carrier transport edge, but also on the dimensionality of the transport paths and as a result, on the carrier mobility. Conductive atomic force microscopy (C-AFM) study as well as temperature-dependent measurements of the electrical conductivity clearly showed ordered local current paths in the regular side chain P3HT films, while random paths prevailed in the irregular sample. Regular side chain substitution can be activated more easily and favors one-dimensional transport along the backbone chain direction, while the irregular sample presents the three-dimensional electron hopping behavior. As a consequence, the regular side chain P3HT samples demonstrated high carrier mobility of 2.9 ± 0.3 cm²/V·s, which is more than one order of magnitude higher than that in irregular side chain P3HT films, resulting in a maximum thermoelectric (TE) power factor of 39.1 ± 2.5 μW/mK² at room temperature. These findings would formulate design rules for organic semiconductors based on these complex systems, and especially assist in the design of high performance OTE polymers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。