Self-Assembled, Adjuvant/Antigen-Based Nanovaccine Mediates Anti-Tumor Immune Response against Melanoma Tumor

自组装、基于佐剂/抗原的纳米疫苗介导针对黑色素瘤的抗肿瘤免疫反应

阅读:6
作者:Santhosh Kalash Rajendrakumar, Adityanarayan Mohapatra, Bijay Singh, Vishnu Revuri, Yong-Kyu Lee, Chang Seong Kim, Chong-Su Cho, In-Kyu Park

Abstract

Malignant melanoma is a highly aggressive type of cancer that requires radical treatment strategies to inhibit the cancer cell progression and metastasis. In recent years, preclinical research and clinical trials on melanoma treatment have been considerably focused on the adjuvant-based immunotherapy for enhancing the immune response of innate immune cells against cancer cells. However, the clinical outcome of these adjuvant-based treatments is inadequate due to an improper delivery system for these immune activators to reach the target site. Hence, we developed a vaccine formulation containing tumor lysate protein (TL) and poly I:C (PIC) complexed with positively charged poly (sorbitol-co-polyethylenimine (PEI) (PSPEI). The resulting ionic PSPEI-polyplexed antigen/adjuvant (PAA) (PSPEI-PAA) nanocomplexes were stable at the physiological condition, are non-toxic, and have enhanced intracellular uptake of antigen and adjuvant in immature dendritic cells leading to dendritic cell maturation. In the murine B16F10 tumor xenograft model, PSPEI-PAA nanocomplexes significantly suppressed tumor growth and did not exhibit any noticeable sign of toxicity. The level of matured dendritic cells (CD80+/CD86+ cells) in the tumor draining lymph node of PSPEI-PAA treated tumor mice were enhanced and therefore CD8+ T cells infiltration in the tumor were enriched. Additionally, the cytotoxic T lymphocytes (CTLs) assay involving co-culturing of splenocytes isolated from the PSPEI-PAA-treated mice with that of B16F10 cells significantly revealed enhanced cancer killing by the TL-reactivated CTLs compared to untreated control mice bearing tumor. Therefore, we strongly believe that PSPEI-PAA nanocomplexes could be an efficient antigen/adjuvant delivery system and enhance the antitumor immune response against melanoma tumor in the future clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。