TSH Pulses Finely Tune Thyroid Hormone Release and TSH Receptor Transduction

TSH 脉冲精细调节甲状腺激素释放和 TSH 受体转导

阅读:9
作者:Anne Guillou, Yasmine Kemkem, Chrystel Lafont, Pierre Fontanaud, Davide Calebiro, Pauline Campos, Xavier Bonnefont, Tatiana Fiordelisio-Coll, Ying Wang, Emilie Brûlé, Daniel J Bernard, Paul Le Tissier, Frederik Steyn, Patrice Mollard

Abstract

Detection of circulating TSH is a first-line test of thyroid dysfunction, a major health problem (affecting about 5% of the population) that, if untreated, can lead to a significant deterioration of quality of life and adverse effects on multiple organ systems. Human TSH levels display both pulsatile and (nonpulsatile) basal TSH secretion patterns; however, the importance of these in regulating thyroid function and their decoding by the thyroid is unknown. Here, we developed a novel ultra-sensitive ELISA that allows precise detection of TSH secretion patterns with minute resolution in mouse models of health and disease. We characterized the patterns of ultradian TSH pulses in healthy, freely behaving mice over the day-night cycle. Challenge of the thyroid axis with primary hypothyroidism because of iodine deficiency, a major cause of thyroid dysfunction worldwide, results in alterations of TSH pulsatility. Induction in mouse models of sequential TSH pulses that mimic ultradian TSH profiles in periods of minutes were more efficient than sustained rises in basal TSH levels at increasing both thyroid follicle cAMP levels, as monitored with a genetically encoded cAMP sensor, and circulating thyroid hormone. Hence, this mouse TSH assay provides a powerful tool to decipher how ultradian TSH pulses encode thyroid outcomes and to uncover hidden parameters in the TSH-thyroid hormone set-point in health and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。