Nano artificial periosteum PLGA/MgO/Quercetin accelerates repair of bone defects through promoting osteogenic - angiogenic coupling effect via Wnt/ β-catenin pathway

纳米人工骨膜PLGA/MgO/槲皮素通过Wnt/β-catenin通路促进成骨-血管生成偶联作用加速骨缺损修复

阅读:5
作者:Xi He, Wenbin Liu, Yanling Liu, Kai Zhang, Yan Sun, Pengfei Lei, Yihe Hu

Abstract

Bone nonunion or delayed union, caused by stripping or injuring of periosteum, is the most common sequelae of segmental bone defects. The preservation of periosteum, or the use of periosteal grafts, can significantly improve the integration of bone graft, speeding up the process of bone reconstruction. However, in most cases, periosteum cannot be preserved with bioactivity. Thus, it is pivotal to develop artificial periosteum. In this study, artificial periosteum of PLGA/MgO/Quercetin was prepared by electrospinning. PLGA/MgO/Quercetin membranes were shown to have a highly porous surface and microstructure, as observed by scanning electron microscopy. Along with excellent biocompatibility, PLGA/MgO/Quercetin membranes promoted cell proliferation and migration, as well as osteogenic differentiation of BMSCs (Bone marrow mesenchymal stem cells) in a dose-dependent manner through the activation of Wnt/β-Catenin pathway. The PLGA/MgO/Quercetin membranes, with an appropriate concentration of quercetin (<1 ​wt%), promoted EPCs (Endothelial progenitor cells) angiogenesis. In a subcutaneous implantation model and rat skull defect model, optimal osteogenesis and angiogenesis function were observed for the PLGA/20 ​wt% MgO/0.1 ​wt% Quercetin membrane. In conclusion, PLGA/MgO membranes, with an appropriate concentration of quercetin, show a variety of biological activities and are promising materials for the generation of artificial periosteum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。