Combination bromo- and extraterminal domain and poly (ADP-ribose) polymerase inhibition synergistically enhances DNA damage and inhibits neuroblastoma tumorigenesis

溴和末端外结构域与聚(ADP-核糖)聚合酶抑制的组合可协同增强 DNA 损伤并抑制神经母细胞瘤肿瘤发生

阅读:4
作者:Jillian C Jacobson, Jingbo Qiao, Rachael A Clark, Dai H Chung

Conclusions

Combination BET and PARP inhibition synergistically inhibited neuroblastoma tumorigenesis in vitro. In MYCN-amplified neuroblastoma cells, this effect may be induced by downregulation of MYCN transcription, defects in DNA repair, accumulation of DNA damage, and apoptosis. In non-MYCN-amplified cell lines, combination treatment induced cell cycle arrest.

Methods

Four human neuroblastoma cell lines were examined: two MYCN-amplified (BE(2)-C and IMR-32), and two non-MYCN-amplified (SK-N-SH and SH-SY5Y). Cells were treated with JQ1 (BET inhibitor), Olaparib (PARP inhibitor), or in combination to assess for therapeutic synergy of JQ1 and Olaparib. Treated cells were harvested and analyzed. Quantitative assessment of combination treatment synergy was performed using the median effect principle of Chou and Talalay.

Purpose

JQ1 is a bromo- and extraterminal (BET) domain inhibitor that downregulates MYC expression and impairs the DNA damage response. Poly (ADP-ribose) polymerase (PARP) inhibitors prevent DNA damage sensing and repair. We hypothesized that JQ1 would promote a DNA repair-deficient phenotype that sensitizes neuroblastoma cells to PARP inhibition.

Results

Combination treatment with Olaparib decreased the IC50 of JQ1 by 19.9-fold, 2.0-fold, 12.1-fold, and 2.0-fold in the BE(2)-C, IMR-32, SK-N-SH, and SH-SY5Y cell lines, respectively. In the MYCN-amplified cell lines, BE(2)-C and IMR-32, combination treatment decreased gene expression of MYCN relative to single-drug treatment alone or control. Combination treatment decreased protein expression of DNA repair proteins Ku80 and RAD51, led to accumulation of DNA damage marker phospho-histone H2A.X, and increased caspase activity. In the non-MYCN-amplified cell lines, SK-N-SH and SH-SY5Y, combination treatment induced G0/G1 cell cycle arrest. Conclusions: Combination BET and PARP inhibition synergistically inhibited neuroblastoma tumorigenesis in vitro. In MYCN-amplified neuroblastoma cells, this effect may be induced by downregulation of MYCN transcription, defects in DNA repair, accumulation of DNA damage, and apoptosis. In non-MYCN-amplified cell lines, combination treatment induced cell cycle arrest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。