The tumor-enriched small molecule gambogic amide suppresses glioma by targeting WDR1-dependent cytoskeleton remodeling

富含肿瘤的小分子藤黄酰胺通过靶向 WDR1 依赖的细胞骨架重塑来抑制神经胶质瘤

阅读:5
作者:Jiaorong Qu #, Bojun Qiu #, Yuxin Zhang, Yan Hu, Zhixing Wang, Zhiang Guan, Yiming Qin, Tongtong Sui, Fan Wu, Boyang Li, Wei Han, Xiaozhong Peng

Abstract

Glioma is the most prevalent brain tumor, presenting with limited treatment options, while patients with malignant glioma and glioblastoma (GBM) have poor prognoses. The physical obstacle to drug delivery imposed by the blood‒brain barrier (BBB) and glioma stem cells (GSCs), which are widely recognized as crucial elements contributing to the unsatisfactory clinical outcomes. In this study, we found a small molecule, gambogic amide (GA-amide), exhibited the ability to effectively penetrate the blood-brain barrier (BBB) and displayed a notable enrichment within the tumor region. Moreover, GA-amide exhibited significant efficacy in inhibiting tumor growth across various in vivo glioma models, encompassing transgenic and primary patient-derived xenograft (PDX) models. We further performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen to determine the druggable target of GA-amide. By the combination of the cellular thermal shift assay (CETSA), the drug affinity responsive target stability (DARTS) approach, molecular docking simulation and surface plasmon resonance (SPR) analysis, WD repeat domain 1 (WDR1) was identified as the direct binding target of GA-amide. Through direct interaction with WDR1, GA-amide promoted the formation of a complex involving WDR1, MYH9 and Cofilin, which accelerate the depolymerization of F-actin to inhibit the invasion of patient-derived glioma cells (PDCs) and induce PDC apoptosis via the mitochondrial apoptotic pathway. In conclusion, our study not only identified GA-amide as an effective and safe agent for treating glioma but also shed light on the underlying mechanisms of GA-amide from the perspective of cytoskeletal homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。