Abstract
Emerging clinically required α-synuclein (α-syn) inhibitor which acts as a neuroprotective nanocomposite drug is in increased demand as a patient-safe central nervous system therapeutic. This inhibitor is intended to chemically engineer graphene quantum dot (GQD) with blue luminescence, and stands to be a potential cure for Parkinson's disease. It has been theorized that α-syn aggregation is a critical step in the development of Parkinson's. Hence narrow the target by α-syn inhibition, through chemically synthesize methyl N-allyl N-benzoylmethioninate (MABM) and functionally engineer the surface of GQD to target the brain delivery on C57BL/6 mice. Spectroscopic and simulation studies confirm defibrillation through the interaction between N-terminal amino acids and MABM-GQD nanoparticles, which makes nontoxic α-syn. Therefore, this drug's ability to cross the blood-brain barrier in vitro functionally prevents neuronal loss in neuroblastoma cells. Thus, in vivo cerebral blood flow analysis using magnetic resonance imaging illustrates, how this nanocomposite can possibly treat Parkinson's.
