Biomimetic Cell-Substrate of Chitosan-Cross-linked Polyaniline Patterning on TiO2 Nanotubes Enables hBM-MSCs to Differentiate the Osteoblast Cell Type

TiO2 纳米管上壳聚糖交联聚苯胺图案化的仿生细胞基质使 hBM-MSC 能够分化成成骨细胞类型

阅读:8
作者:Rupesh Kandel, Se Rim Jang, Sita Shrestha, Seo Yeon Lee, Bishnu Kumar Shrestha, Chan Hee Park, Cheol Sang Kim

Abstract

Titanium-based substrates are widely used in orthopedic treatments and hard tissue engineering. However, many of these titanium (Ti) substrates fail to interact properly between the cell-to-implant interface, which can lead to loosening and dislocation from the implant site. As a result, scaffold implant-associated complications and the need for multiple surgeries lead to an increased clinical burden. To address these challenges, we engineered osteoconductive and osteoinductive biosubstrates of chitosan (CS)-cross-linked polyaniline (PANI) nanonets coated on titanium nanotubes (TiO2NTs) in an attempt to mimic bone tissue's major extracellular matrix. Inspired by the architectural and tunable mechanical properties of such tissue, the TiO2NTs-PANI@CS-based biofilm conferred strong anticorrosion, the ability to nucleate hydroxyapatite nanoparticles, and excellent biocompatibility with human bone marrow-derived mesenchymal stem cells (hBM-MSCs). An in vitro study showed that the substrate-supported cell activities induced greater cell proliferation and differentiation compared to cell-TiO2NTs alone. Notably, the bone-related genes (collagen-I, OPN, OCN, and RUNX 2) were highly expressed within TiO2NTs-PANI@CS over a period of 14 days, indicating greater bone cell differentiation. These findings demonstrate that the in vitro functionality of the cells on the osteoinductive-like platform of TiO2NTs-PANI@CS improves the efficiency for osteoblastic cell regeneration and that the substrate potentially has utility in bone tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。