Melatonin inhibits proliferation, migration, and invasion by inducing ROS-mediated apoptosis via suppression of the PI3K/Akt/mTOR signaling pathway in gallbladder cancer cells

褪黑素通过抑制胆囊癌细胞中的 PI3K/Akt/mTOR 信号通路诱导 ROS 介导的细胞凋亡,从而抑制增殖、迁移和侵袭

阅读:8
作者:Kunlun Chen, Pengfei Zhu, Wenhui Chen, Kai Luo, Xiao-Jing Shi, Wenlong Zhai

Background

Melatonin is an indolic compound mainly secreted by the pineal gland and plays a vital role in the regulation of circadian rhythms and cancer therapy. However, the effects of melatonin in gallbladder cancer (GBC) and the related mechanism remain unknown.

Conclusions

Our study revealed that melatonin could induce apoptosis by suppressing the PI3K/Akt/mTOR signaling pathway. Therefore, melatonin might serve as a potential therapeutic drug in the future treatment of gallbladder cancer.

Methods

In this study, the antitumor activity of melatonin on gallbladder cancer was explored both in vitro and in vivo. After treatment with different concentrations of melatonin, the cell viability, migration, and invasion of gallbladder cancer cells (NOZ and GBC-SD cells) were evaluated by CCK-8 assay, wound healing, and Transwell assay.

Results

The results showed that melatonin inhibited growth, migration, and invasion of gallbladder cancer cells. Subsequently, the assays suggested that melatonin significantly induced apoptosis in gallbladder cancer cells and altered the expression of the apoptotic proteins, including Bax, Bcl-2, cytochrome C, cleaved caspase-3, and PARP. Besides, the intracellular reactive oxygen species (ROS) was found to be upregulated after melatonin treatment in gallbladder cancer cells. Melatonin was found to suppress the PI3K/Akt/mTOR signaling pathway in a time-dependent manner by inhibiting the phosphorylation of PI3K, Akt, and mTOR. Treatment with N-acetyl-L-cysteine (NAC) or 740 Y-P remarkably attenuated the antitumor effects of melatonin in NOZ and GBC-SD cells. Finally, melatonin suppressed the growth of GBC-SD cells in an athymic nude mice xenograft model in vivo. Conclusions: Our study revealed that melatonin could induce apoptosis by suppressing the PI3K/Akt/mTOR signaling pathway. Therefore, melatonin might serve as a potential therapeutic drug in the future treatment of gallbladder cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。