CUDC-907 exhibits potent antitumor effects against ovarian cancer through multiple in vivo and in vitro mechanisms

CUDC-907 通过多种体内和体外机制表现出对卵巢癌的强效抗肿瘤作用

阅读:5
作者:Yuanpei Wang #, Jing Wen #, Xiangyi Sun #, Yi Sun, Yuchen Liu, Xiaoran Cheng, Weijia Wu, Qianwen Liu, Fang Ren

Conclusion

Our results showed that CUDC-907 had powerful anti-tumor effects on OC, which could provide a theoretical and experimental basis for the application of CUDC-907 in the therapy of OC.

Methods

Here, we examined the correlation between PI3K or HDAC expression and the prognosis of OC patients using the GEPIA database. RNA-Seq analysis was performed on OC cells treated with CUDC-907.To assess various cellular processes, including proliferation, migration, invasion, apoptosis, and cell cycle, we performed a series of assays, including the CCK8, EDU, wound healing, cell invasion, and flow cytometry assays. Real-time quantitative PCR and western blotting were performed to measure the expressions of target genes. Additionally, we utilized the SKOV3 xenograft tumor model to investigate the inhibitory effects of CUDC-907 on tumor growth in vivo.

Purpose

CUDC-907 is a promising dual-target inhibitor of the HDAC and PI3K signaling pathways, with demonstrated therapeutic effects in a range of malignant tumors. However, its potential application in ovarian cancer (OC) has not been fully explored yet. In this study, we sought to investigate the efficacy of CUDC-907 in treating OC, both in vitro and in vivo.

Results

Bioinformatics analyses revealed that up-regulated HDAC and PI3K were significantly correlated with patients' poor survival in OC. In vivo and in vitro experiments have demonstrated that CUDC-907 could inhibit the proliferation of OC cells by inhibiting the PI3K and HDAC pathways to down-regulate the expression of c-Myc, and induce cell apoptosis by inhibiting the PI3K/AKT/Bcl-2 pathway, and up-regulate p21 to induce G2 /M phase arrest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。