Organogel Coupled with Microstructured Electrospun Polymeric Nonwovens for the Effective Cleaning of Sensitive Surfaces

有机凝胶与微结构电纺聚合物非织造布结合可有效清洁敏感表面

阅读:6
作者:Yiming Jia, Giorgia Sciutto, Rocco Mazzeo, Chiara Samorì, Maria Letizia Focarete, Silvia Prati, Chiara Gualandi

Abstract

Hydrogels and organogels are widely used as cleaning materials, especially when a controlled solvent release is necessary to prevent substrate damage. This situation is often encountered in the personal care and electronic components fields and represents a challenge in restoration, where the removal of a thin layer of aged varnish from a painting may compromise the integrity of the painting itself. There is an urgent need for new and effective cleaning materials capable of controlling and limiting the use of solvents, achieving at the same time high cleaning efficacy. In this paper, new sandwich-like composites that fully address these requirements are developed by using an organogel (poly(3-hydroxybutyrate) + γ-valerolactone) in the core and two external layers of electrospun nonwovens made of continuous submicrometric fibers produced by electrospinning (either poly(vinyl alcohol) or polyamide 6,6). The new composite materials exhibit an extremely efficient cleaning action that results in the complete elimination of the varnish layer with a minimal amount of solvent adsorbed by the painting layer after the treatment. This demonstrates that the combined materials exert a superficial action that is of utmost importance to safeguard the painting. Moreover, we found that the electrospun nonwoven layers act as mechanically reinforcement components, greatly improving the bending resistance of organogels and their handling. The characterization of these innovative cleaning materials allowed us to propose a mechanism to explain their action: electrospun fibers play the leading role by slowing down the diffusion of the solvent and by conferring to the entire composite a microstructured rough superficial morphology, enabling to achieve outstanding cleaning performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。