Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries

柔性独立硫/聚丙烯腈/氧化石墨烯的合成作为锂/硫电池的正极

阅读:5
作者:Huifen Peng, Xiaoran Wang, Yan Zhao, Taizhe Tan, Zhumabay Bakenov, Yongguang Zhang

Abstract

Rechargeable lithium/sulfur (Li/S) batteries have received quite significant attention over the years because of their high theoretical specific capacity (1672 mAh·g-1) and energy density (2600 mAh·g-1) which has led to more efforts for improvement in their electrochemical performance. Herein, the synthesis of a flexible freestanding sulfur/polyacrylonitrile/graphene oxide (S/PAN/GO) as the cathode for Li/S batteries by simple method via vacuum filtration is reported. The S/PAN/GO hybrid binder-free electrode is considered as one of the most promising cathodes for Li/S batteries. Graphene oxide (GO) slice structure provides effective ion conductivity channels and increases structural stability of the ternary system, resulting in excellent electrochemical properties of the freestanding S/PAN/GO cathode. Additionally, graphene oxide (GO) membrane was able to minimize the polysulfides' dissolution and their shuttle, which was attributed to the electrostatic interactions between the negatively-charged species and the oxygen functional groups on GO. Furthermore, these oxygen-containing functional groups including carboxyl, epoxide and hydroxyl groups provide active sites for coordination with inorganic materials (such as sulfur). It exhibits the initial reversible specific capacity of 1379 mAh·g-1 at a constant current rate of 0.2 C and maintains 1205 mAh·g-1 over 100 cycles (~87% retention). In addition, the freestanding S/PAN/GO cathode displays excellent coulombic efficiency (~100%) and rate capability, delivering up to 685 mAh·g-1 capacity at 2 C.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。