Quantitative transcriptomic and proteomic analysis reveals corosolic acid inhibiting bladder cancer via suppressing cell cycle and inducing mitophagy in vitro and in vivo

定量转录组学和蛋白质组学分析表明,科罗索酸通过抑制细胞周期和诱导线粒体自噬在体内和体外抑制膀胱癌

阅读:5
作者:Anfang Cui, Xiangling Li, Xiaolei Ma, Zhigang Song, Xiao Wang, Chao Wang, Yong Xia

Abstract

Corosolic acid (CA) is a plant-derived terpenoid compound with many health benefits. However, the anti-tumor effects of CA in bladder cancer remain unexplored. Here, we found that CA inhibited bladder tumor both in vitro and in vivo, and had no significant toxicity in mice. With the aid of transcriptomics and proteomics, we elucidated the regulatory network mechanism of CA inhibiting bladder cancer. Through cell viability detection, cell fluorescence staining and flow cytometry, we discovered that CA inhibited bladder cancer mainly through blocking cell cycle. Interestingly, CA played anticancer roles by distinct mechanisms at different concentrations: low concentrations (<7.0 μg/ml) of CA mainly inhibited DNA synthesis by downregulating TOP2A and LIG1, and diminished mitosis by downregulating CCNA2, CCNB1, CDC20, and RRM2; high concentrations (≥7.0 μg/ml) of CA induced cell death through triggering mitophagy via upregulating NBR1, TAXBP1, SQSTM1/P62, and UBB. CA, as a natural molecule of homology of medicine and food, is of great significance for the prevention and treatment of cancer patients following clarifying its anti-cancer mechanism. This study provides a comprehensive understanding of the pharmacological mechanism of CA inhibition in bladder cancer, which is helpful for the development of new anti-tumor drugs based on CA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。