Sex-based differential regulation of oxidative stress in the vasculature by nitric oxide

一氧化氮对血管氧化应激的性别差异调节

阅读:4
作者:Rommel C Morales, Edward S M Bahnson, George E Havelka, Nadiezhda Cantu-Medellin, Eric E Kelley, Melina R Kibbe

Background

Nitric oxide ((•)NO) is more effective at inhibiting neointimal hyperplasia following arterial injury in male versus female rodents, though the etiology is unclear. Given that superoxide (O2(•-)) regulates cellular proliferation, and (•)NO regulates superoxide dismutase-1 (SOD-1) in the vasculature, we hypothesized that (•)NO differentially regulates SOD-1 based on sex. Materials and

Conclusions

Our results provide evidence that regulation of the redox environment at baseline and following exposure to (•)NO is sex-dependent in the vasculature. These data suggest that sex-based differential redox regulation may be one mechanism by which (•)NO is more effective at inhibiting neointimal hyperplasia in male versus female rodents.

Methods

Male and female vascular smooth muscle cells (VSMC) were harvested from the aortae of Sprague-Dawley rats. O2(•-) levels were quantified by electron paramagnetic resonance (EPR) and HPLC. sod-1 gene expression was assayed by qPCR. SOD-1, SOD-2, and catalase protein levels were detected by Western blot. SOD-1 activity was measured via colorimetric assay. The rat carotid artery injury model was performed on Sprague-Dawley rats ±(•)NO treatment and SOD-1 protein levels were examined by Western blot.

Results

In vitro, male VSMC have higher O2(•-) levels and lower SOD - 1 activity at baseline compared to female VSMC (P < 0.05). (•)NO decreased O2(•-) levels and increased SOD - 1 activity in male (P<0.05) but not female VSMC. (•)NO also increased sod- 1 gene expression and SOD - 1 protein levels in male (P<0.05) but not female VSMC. In vivo, SOD-1 levels were 3.7-fold higher in female versus male carotid arteries at baseline. After injury, SOD-1 levels decreased in both sexes, but (•)NO increased SOD-1 levels 3-fold above controls in males, but returned to baseline in females. Conclusions: Our results provide evidence that regulation of the redox environment at baseline and following exposure to (•)NO is sex-dependent in the vasculature. These data suggest that sex-based differential redox regulation may be one mechanism by which (•)NO is more effective at inhibiting neointimal hyperplasia in male versus female rodents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。