Background
Epigenetic drugs like sodium butyrate (NaB) show antidepressant-like effects in preclinical studies, but the exact molecular mechanisms of the antidepressant effects remain unknown. While research using NaB has mainly focused on its role as a histone deacetylase inhibitor (HDACi), there is also evidence that NaB affects DNA methylation.
Conclusions
Our data support the antidepressant efficacy of HDACis and suggest that their epigenetic effects may also include DNA methylation changes that are mediated by demethylation-facilitating enzymes like TET1.
Methods
The purpose of this study was to examine NaB's putative antidepressant-like efficacy in relation to DNA methylation changes in the prefrontal cortex of an established genetic rat model of depression (the Flinders Sensitive Line [FSL]) and its controls (the Flinders Resistant Line).
Results
The FSL rats had lower levels of ten-eleven translocation methylcytosine dioxygenase 1 (TET1), which catalyzes the conversion of DNA methylation to hydroxymethylation. As indicated by the behavioral despair test, chronic administration of NaB had antidepressant-like effects in the FSL and was accompanied by increased levels of TET1. The TET1 upregulation was also associated with an increase of hydroxymethylation and a decrease of methylation in brain-derived neurotrophic factor (Bdnf), a gene associated with neurogenesis and synaptic plasticity. These epigenetic changes were associated with a corresponding BDNF overexpression. Conclusions: Our data support the antidepressant efficacy of HDACis and suggest that their epigenetic effects may also include DNA methylation changes that are mediated by demethylation-facilitating enzymes like TET1.
