Interplay between the phosphatase PHLPP1 and E3 ligase RNF41 stimulates proper kinetochore assembly via the outer-kinetochore protein SGT1

磷酸酶 PHLPP1 和 E3 连接酶 RNF41 之间的相互作用通过外动粒蛋白 SGT1 刺激正确的动粒组装

阅读:6
作者:Narmadha Reddy Gangula, Subbareddy Maddika

Abstract

Kinetochores link chromosomes to spindle microtubules and are essential for accurate chromosome segregation during cell division. Kinetochores assemble at the centromeric region of chromosomes as a multiprotein complex. However, the molecular mechanisms of kinetochore assembly have not yet been fully elucidated. In this study, we identified pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) as a regulatory phosphatase that facilitates proper kinetochore assembly. We found that PHLPP1 interacted with the essential outer-kinetochore protein SGT1 and stabilized its protein levels. Loss of PHLPP1 from cells led to SGT1 degradation and thereby caused defective kinetochore assembly. We also found that the ring finger protein 41 (RNF41) as an E3 ligase ubiquitinated and degraded SGT1 in a phosphorylation-dependent manner. PHLPP1 dephosphorylated SGT1 at four conserved residues (Ser-17, Ser-249, Ser-289, and Thr-233) and thereby prevented SGT1 from associating with RNF41, in turn, countering SGT1 degradation. Importantly, depletion of RNF41 or expression of a non-phosphorylatable SGT1 mutant rescued the kinetochore defects caused by the loss of PHLPP1. Taken together, our results suggest that PHLPP1 plays an important role in the assembly of kinetochores by counteracting RNF41-mediated SGT1 degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。