Viability of diffuse large B-cell lymphoma cells is regulated by kynurenine 3-monooxygenase activity

弥漫性大 B 细胞淋巴瘤细胞的活力受犬尿氨酸 3-单加氧酶活性的调节

阅读:6
作者:Nanaka Morita, Masato Hoshi, Takeshi Hara, Soranobu Ninomiya, Taisuke Enoki, Misao Yoneda, Hisashi Tsurumi, Kuniaki Saito

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy that is the most common type of lymphoma in Japan. Previous studies have demonstrated that patients with DLBCL have a poor prognosis due to increased levels of indoleamine 2,3-dioxygnase and kynurenine (KYN). However, the roles of metabolites acting downstream of KYN and associated enzymes are not fully understood. The present study investigated the role of kynurenine 3-monooxygenase (KMO), which catalyzes the conversion of KYN to 3-hydroxykynurenine (3-HK), using serum samples from patients with DLBCL and human DLBCL cell lines with different KMO expression [STR-428 cells with high levels of KMO expression (KMOhigh) and KML-1 cells with low levels of KMO expression (KMOlow)]. Serum samples from 28 patients with DLBCL and 34 healthy volunteers were used to investigate the association between prognosis and KMO activity or 3-HK levels. Furthermore, to investigate the roles of KMO and its related metabolites, STR-428 and KML-1 cell lines, and the lymph nodes of patients with DLBCL were analyzed by reverse transcription-quantitative PCR for KMO, KYNU, 3-hydroxyanthranilate-3,4-dioxygenase and quinolinate phosphoribosyltransferase, by western blotting, and immunohistochemical or immunofluorescence staining for KMO, and by cell viability and NAD+/NADH assays. KYN pathway metabolites in serum samples were measured by HPLC. Serum 3-HK levels were regulated independently of serum KYN levels, and increased serum 3-HK levels and KMO activity were found to be associated with worse disease progression. Notably, the addition of KMO inhibitors and 3-HK negatively and positively regulated the viability of DLBCL cells, respectively. Furthermore, NAD+ levels in KMOhigh STR-428 cells were significantly higher than those in KMOlow KML-1 cells. These results suggested that 3-HK generated by KMO activity may be involved in the regulation of DLBCL cell viability via NAD+ synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。