Global Transcriptional and Epigenetic Reconfiguration during Chemical Reprogramming of Human Retinal Pigment Epithelial Cells into Photoreceptor-like Cells

人类视网膜色素上皮细胞化学重编程为感光样细胞过程中的全局转录和表观遗传重构

阅读:5
作者:Xiaoqian Deng, Ryan Lee, Sin Yee Lim, Zheng Zhong, Jing Wang, Yizhi Liu, Guoping Fan

Abstract

Retinal degenerative diseases are frequently caused by the loss of retinal neural cells such as photoreceptors. Cell replacement is regarded as one of the most promising therapies. Multiple types of stem and somatic cells have been tested for photoreceptor conversion. However, current induction efficiencies are still low and the molecular mechanisms underlying reprogramming remain to be clarified. In this work, by combining treatment with small molecules, we directly reprogrammed human fetal retinal pigment epithelial (RPE) cells into chemically induced photoreceptor-like cells (CiPCs) in vitro. Bulk and single-cell RNA sequencing, as well as methylation sequencing, were performed to understand the transcriptional and epigenetic changes during CiPCs conversion. A multi-omics analysis showed that the direct reprogramming process partly resembled events of early retina development. We also found that the efficiency of CiPCs conversion from RPE is much better than that from human dermal fibroblasts (HDF). The small molecules effectively induced RPE cells into CiPCs via suppression of the epithelial-to-mesenchymal transition (EMT). Among the signaling pathways involved in CiPCs conversion, glutamate receptor activation is prominent. In summary, RPE cells can be efficiently reprogrammed into photoreceptor-like cells through defined pharmacological modulations, providing a useful cell source for photoreceptor generation in cell replacement therapy for retinal degenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。