Probing TGF-β1-induced cytoskeletal rearrangement by fluorescent-labeled silica nanoparticle uptake assay

通过荧光标记二氧化硅纳米粒子摄取试验探测 TGF-β1 诱导的细胞骨架重排

阅读:4
作者:HyeRim Shin, Jun-Hyuk Choi, Ji Youn Lee

Abstract

Cytoskeletal proteins are essential in maintaining cell morphology, proliferation, and viability as well as internalizing molecules in phagocytic and non-phagocytic cells. Orderly aligned cytoskeletons are disturbed by a range of biological processes, such as the epithelial-mesenchymal transition, which is observed in cancer metastasis. Although many biological methods have been developed to detect cytoskeletal rearrangement, simple and quantitative in vitro approaches are still in great demand. Herein, we applied a flow cytometry-based nanoparticle uptake assay to measure the degree of cytoskeletal rearrangement induced by transforming growth factor β1 (TGF-β1). For the assay, silica nanoparticles, selected for their high biocompatibility, were fluorescent-labeled to facilitate quantification with flow cytometry. Human keratinocyte HaCaT cells were treated with different concentrations of TGF-β1 and then exposed to FITC-labeled silica nanoparticles. Increasing concentrations of TGF-β1 induced gradual changes in cytoskeletal rearrangement, as confirmed by conventional assays. The level of nanoparticle uptake increased by TGF-β1 treatment in a dose-dependent manner, indicating that our nanoparticle uptake assay can be used as a quick and non-destructive approach to measure cytoskeletal rearrangement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。