Controlling of Photophysical Behavior of Rhenium(I) Complexes with 2,6-Di(thiazol-2-yl)pyridine-Based Ligands by Pendant π-Conjugated Aryl Groups

侧链π-共轭芳基对2,6-二(噻唑-2-基)吡啶基配体铼(I)配合物光物理行为的控制

阅读:6
作者:Anna M Maroń, Joanna Palion-Gazda, Agata Szłapa-Kula, Ewa Schab-Balcerzak, Mariola Siwy, Karolina Sulowska, Sebastian Maćkowski, Barbara Machura

Abstract

The structure-property correlations and control of electronic excited states in transition metal complexes (TMCs) are of high significance for TMC-based functional material development. Within these studies, a series of Re(I) carbonyl complexes with aryl-substituted 2,6-di(thiazol-2-yl)pyridines (Arn-dtpy) was synthesized, and their ground- and excited-state properties were investigated. A number of condensed aromatic rings, which function as the linking mode of the aryl substituent, play a fundamental role in controlling photophysics of the resulting [ReCl(CO)3(Arn-dtpy-κ2N)]. Photoexcitation of [ReCl(CO)3(Arn-dtpy-κ2N)] with 1-naphthyl-, 2-naphthyl-, 9-phenanthrenyl leads to the population of 3MLCT. The lowest triplet state of Re(I) chromophores bearing 9-anthryl, 2-anthryl, 1-pyrenyl groups is ligand localized. The rhenium(I) complex with appended 1-pyrenyl group features long-lived room temperature emission attributed to the equilibrium between 3MLCT and 3IL/3ILCT. The excited-state dynamics in complexes [ReCl(CO)3(9-anthryl-dtpy-κ2N)] and [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is strongly dependent on the electronic coupling between anthracene and {ReCl(CO)3(dtpy-κ2N)}. Less steric hindrance between the chromophores in [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is responsible for the faster formation of 3IL/3ILCT and larger contribution of 3ILCTanthracene→dtpy in relation to the isomeric complex [ReCl(CO)3(9-anthryl-dtpy-κ2N)]. In agreement with stronger electronic communication between the aryl and Re(I) coordination centre, [ReCl(CO)3(2-anthryl-dtpy-κ2N)] displays room-temperature emission contributed to by 3MLCT and 3ILanthracene/3ILCTanthracene→dtpy phosphorescence. The latter presents rarely observed phenomena in luminescent metal complexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。