Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis

Runx2/Cbfa1,而非心肌素的丢失,是平滑肌细胞谱系重编程向骨软骨发生所必需的

阅读:9
作者:Mei Y Speer, Xianwu Li, Pranoti G Hiremath, Cecilia M Giachelli

Abstract

Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. Smooth muscle cells (SMCs) may play an important role in vascular cartilaginous metaplasia and calcification via reprogramming to the osteochondrogenic state. To study whether SM lineage reprogramming and thus matrix calcification is reversible and what the necessary regulatory factors are to reverse this process, we used cells isolated from calcifying arterial medias of 4-week-old matrix Gla protein knockout mice (MGP-/-SMCs). We found that vascular cells with an osteochondrogenic phenotype regained SMC properties (positive for SM22alpha and SM alpha-actin) and down-regulated osteochondrogenic gene expression (Runx2/Cbfa1 and osteopontin) upon culture in medium that favors SMC differentiation. Over time, the MGP-/- SMCs no longer expressed osteochondrogenic proteins and became indistinguishable from wild-type SMCs. Moreover, phenotypic switch of the restored SMCs to the osteochondrogenic state was re-induced by the pro-calcific factor, inorganic phosphate. Finally, loss- and gain-of-function studies of myocardin, a SM-specific transcription co-activator, and Runx2/Cbfa1, an osteochondrogenic transcription factor, revealed that upregulation of Runx2/Cbfa1, but not loss of myocardin, played a critical role in phosphate-induced SMC lineage reprogramming and calcification. These results are the first to demonstrate reversibility of vascular SMCs in the osteochondrogenic state in response to local environmental cues, and that myocardin-enforced SMC lineage allocation was not sufficient to block vascular calcification. On the other hand, Runx2/Cbfa1 was found to be a decisive factor identified in the process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。