MicroRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress

MicroRNA 介导内皮细胞对平滑肌细胞的炎症反应及其通过抗动脉粥样硬化剪切应力的抑制

阅读:6
作者:Li-Jing Chen, Li Chuang, Yi-Hsuan Huang, Jing Zhou, Seh Hong Lim, Chih-I Lee, Wei-Wen Lin, Ting-Er Lin, Wei-Li Wang, Linyi Chen, Shu Chien, Jeng-Jiann Chiu

Conclusions

Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries.

Objective

To address the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress.

Results

Coculturing ECs with sSMCs under static condition causes initial increases of 4 anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 hours and those for miR-451/98 lasted for only 6 to 12 hours. Shear stress (12 dynes/cm(2)) to cocultured ECs for 24 hours augments these 4 miR expressions. In vivo, these 4 miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, miR-708, miR-451, and miR-98 target interleukin-1 receptor-associated kinase, inhibitor of nuclear factor-κB kinase subunit-γ, interleukin-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit nuclear factor-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. Nuclear factor-E2-related factor (Nrf)-2 is critical for shear-induction of miR-146a in cocultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. Conclusions: Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。