CA9 Silencing Promotes Mitochondrial Biogenesis, Increases Putrescine Toxicity and Decreases Cell Motility to Suppress ccRCC Progression

CA9 沉默促进线粒体生物合成、增加腐胺毒性并降低细胞迁移能力以抑制 ccRCC 进展

阅读:5
作者:Jiatong Xu, Songbiao Zhu, Lina Xu, Xiaohui Liu, Wenxi Ding, Qingtao Wang, Yuling Chen, Haiteng Deng

Abstract

Carbonic anhydrase IX (CA9), a pH-regulating transmembrane protein, is highly expressed in solid tumors, and particularly in clear cell renal cell carcinoma (ccRCC). The catalytic mechanisms of CA9 are well defined, but its roles in mediating cell migration/invasion and survival in ccRCC remain to be determined. Here, we confirmed that the mRNA expression of CA9 in ccRCC was significantly higher than that in para-carcinoma tissues from analysis of the datasets in The Cancer Genome Atlas. CA9 knockdown upregulated oxidative phosphorylation-associated proteins and increased mitochondrial biogenesis, resulting in the reversal of the Warburg phenotype and the inhibition of cell growth. Our study revealed that CA9 knockdown upregulated mitochondrial arginase 2 (ARG2), leading to the accumulation of putrescine, which suppressed ccRCC proliferation. Surfaceomics analysis revealed that CA9 knockdown downregulated proteins associated with extracellular matrix (ECM)-receptor interaction and cell adhesion, resulting in decreased cell migration. CA9 silencing also downregulated amino acid transporters, leading to reduced cellular amino acids. Collectively, our data show that CA9 knockdown suppresses proliferation via metabolic reprogramming and reduced cell migration, reaffirming that CA9 is a potential therapeutic target for ccRCC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。