Effects of dapagliflozin monotherapy and combined aerobic exercise on skeletal muscle mitochondrial quality control and insulin resistance in type 2 diabetes mellitus rats

达格列净单药治疗及联合有氧运动对2型糖尿病大鼠骨骼肌线粒体质量控制及胰岛素抵抗的影响

阅读:4
作者:Liangzhi Zhang, Hengjun Lin, Xudong Yang, Jipeng Shi, Xiusheng Sheng, Lifeng Wang, Ting Li, Helong Quan, Xia Zhai, Wei Li

Abstract

Type 2 diabetes mellitus (T2DM) is a prevalent, chronic metabolic disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors and aerobic exercise (AE) have shown promise in mitigating insulin resistance (IR) and T2DM. This study investigated the effects of dapagliflozin (Dapa) monotherapy and combined AE on mitochondrial quality control (MQC) in skeletal muscle and IR in T2DM rats. T2DM rats, induced by a high-fat diet/streptozotocin model, were randomly assigned to the following groups: T2DM+vehicle group (DMV), T2DM rats treated with Dapa (DMDa, 10 mg/kg/d), T2DM rats subjected to combined Dapa treatment and AE (DMDa+AE), and the standard control group (CON). Blood and skeletal muscle samples were collected after 6 weeks of intragastric administration and treadmill exercise. The results showed that DMDa monotherapy could reduce the accumulation of white adipose tissue and skeletal muscle lipid droplets and improve HOMA-IR. While the combined AE led to further reductions in subcutaneous white adipose tissue and fasting glucose levels, it did not confer additional benefits in terms of HOMA-IR. Furthermore, Dapa monotherapy enhanced skeletal muscle mitochondrial biogenesis (PGC-1α, NRF1, TFAM, and COX IV), mitochondrial dynamics (OPA1, DRP1, and MFN2), and mitophagy (PGAM5 and PINK1) related protein levels. Nevertheless, the combination of Dapa with AE treatment did not yield an additive effect. In conclusion, this study highlights the potential of SGLT2 inhibitors, specifically Dapa, in ameliorating IR and maintaining MQC in skeletal muscle in rats with T2DM. However, combined AE did not produce an additive effect, indicating the need for further research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。