Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons

通过阻断培养的小脑颗粒神经元中的钠通道β4开放通道来控制瞬时、复苏和持续电流

阅读:4
作者:Jason S Bant, Indira M Raman

Abstract

Voltage-gated Na channels in several classes of neurons, including cells of the cerebellum, are subject to an open-channel block and unblock by an endogenous protein. The Na(V)beta4 (Scn4b) subunit is a candidate blocking protein because a free peptide from its cytoplasmic tail, the beta4 peptide, can block open Na channels and induce resurgent current as channels unblock upon repolarization. In heterologous expression systems, however, Na(V)beta4 fails to produce resurgent current. We therefore tested the necessity of this subunit in generating resurgent current, as well as its influence on Na channel gating and action potential firing, by studying cultured cerebellar granule neurons treated with siRNA targeted against Scn4b. Knockdown of Scn4b, confirmed with quantitative RT-PCR, led to five electrophysiological phenotypes: a loss of resurgent current, a reduction of persistent current, a hyperpolarized half-inactivation voltage of transient current, a higher rheobase, and a decrease in repetitive firing. All disruptions of Na currents and firing were rescued by the beta4 peptide. The simplest interpretation is that Na(V)beta4 itself blocks Na channels of granule cells, making this subunit the first blocking protein that is responsible for resurgent current. The results also demonstrate that a known open-channel blocking peptide not only permits a rapid recovery from nonconducting states upon repolarization from positive voltages but also increases Na channel availability at negative potentials by antagonizing fast inactivation. Thus, Na(V)beta4 expression determines multiple aspects of Na channel gating, thereby regulating excitability in cultured cerebellar granule cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。