Long-read metagenomics of multiple displacement amplified DNA of low-biomass human gut phageomes by SACRA pre-processing chimeric reads

通过 SACRA 预处理嵌合读段对低生物量人类肠道噬菌体进行多重置换扩增 DNA 的长读宏基因组学

阅读:6
作者:Yuya Kiguchi, Suguru Nishijima, Naveen Kumar, Masahira Hattori, Wataru Suda

Abstract

The human gut bacteriophage community (phageome) plays an important role in the host's health and disease; however, the entire structure is poorly understood, partly owing to the generation of many incomplete genomes in conventional short-read metagenomics. Here, we show long-read metagenomics of amplified DNA of low-biomass phageomes with multiple displacement amplification (MDA), involving the development of a novel bioinformatics tool, split amplified chimeric read algorithm (SACRA), that efficiently pre-processed numerous chimeric reads generated through MDA. Using five samples, SACRA markedly reduced the average chimera ratio from 72% to 1.5% in PacBio reads with an average length of 1.8 kb. De novo assembly of chimera-less PacBio long reads reconstructed contigs of ≥5 kb with an average proportion of 27%, which was 1% in contigs from MiSeq short reads, thereby dramatically improving contig length and genome completeness. Comparison of PacBio and MiSeq contigs found MiSeq contig fragmentations frequently near local repeats and hypervariable regions in the phage genomes, and those caused by multiple homologous phage genomes coexisting in the community. We also developed a reference-independent method to assess the completeness of the linear phage genomes. Overall, we established a SACRA-coupled long-read metagenomics robust to highly diverse gut phageomes, identifying high-quality circular and linear phage genomes with adequate sequence quantity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。