Retinoic acid imprints a mucosal-like phenotype on dendritic cells with an increased ability to fuel HIV-1 infection

视黄酸在树突状细胞上留下了类似粘膜的表型,增强了其促进 HIV-1 感染的能力

阅读:6
作者:Natalia Guerra-Pérez, Ines Frank, Filippo Veglia, Meropi Aravantinou, Diana Goode, James L Blanchard, Agegnehu Gettie, Melissa Robbiani, Elena Martinelli

Abstract

The tissue microenvironment shapes the characteristics and functions of dendritic cells (DCs), which are important players in HIV infection and dissemination. Notably, DCs in the gut have the daunting task of orchestrating the balance between immune response and tolerance. They produce retinoic acid (RA), which imprints a gut-homing phenotype and influences surrounding DCs. To investigate how the gut microenvironment impacts the ability of DCs to drive HIV infection, we conditioned human immature monocyte-derived DCs (moDCs) with RA (RA-DCs), before pulsing them with HIV and mixing them with autologous T cells. RA-DCs showed a semimature, mucosal-like phenotype and released higher amounts of TGF-β1 and CCL2. Using flow cytometry, Western blot, and microscopy, we determined that moDCs express the cell adhesion molecule mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and that RA increases its expression. MAdCAM-1 was also detected on a small population of DCs in rhesus macaque (Macaca mulata) mesenteric lymph node. RA-DCs formed more DC-T cell conjugates and promoted significantly higher HIV replication in DC-T cell mixtures compared with moDCs. This correlated with the increase in MAdCAM-1 expression. Blocking MAdCAM-1 partially inhibited the enhanced HIV replication. In summary, RA influences DC phenotype, increasing their ability to exacerbate HIV infection. We describe a previously unknown mechanism that may contribute to rapid HIV spread in the gut, a major site of HIV replication after mucosal exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。