Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP-9 expression but not direct TJ proteins expression regulation

二甲双胍通过抑制中性粒细胞浸润和 MMP-9 表达来改善 BSCB 破坏,但不直接调节 TJ 蛋白的表达

阅读:5
作者:Di Zhang, Qian Tang, Gang Zheng, Chenggui Wang, Yifei Zhou, Yaosen Wu, Jun Xuan, Naifeng Tian, Xiangyang Wang, Yan Wu, Huazi Xu, Xiaolei Zhang

Abstract

Blood-spinal cord barrier (BSCB) disruption is a major process for the secondary injury of spinal cord injury (SCI) and is considered to be a therapeutic target for SCI. Previously, we demonstrated that metformin could improve functional recovery after SCI; however, the effect of metformin on BSCB is still unknown. In this study, we found that metformin could prevent the loss of tight junction (TJ) proteins at day 3 after SCI in vivo, but in vitro there was no significant difference of these proteins between control and metformin treatment in endothelial cells. This indicated that metformin-induced BSCB protection might not be mediated by up-regulating TJ proteins directly, but by inhibiting TJ proteins degradation. Thus, we investigated the role of metformin on MMP-9 and neutrophils infiltration. Neutrophils infiltration is the major source of the enhanced MMP-9 in SCI. Our results showed that metformin decreased MMP-9 production and blocked neutrophils infiltration at day 1 after injury, which might be related to ICAM-1 down-regulation. Also, our in vitro study showed that metformin inhibited TNF-α-induced MMP-9 up-regulation in neutrophils, which might be mediated via an AMPK-dependent pathway. Together, it illustrated that metformin prevented the breakdown of BSCB by inhibiting neutrophils infiltration and MMP-9 production, but not by up-regulating TJ proteins expression. Our study may help to better understand the working mechanism of metformin on SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。