KDM5 lysine demethylases are involved in maintenance of 3'UTR length

KDM5赖氨酸去甲基化酶参与维持3'UTR长度

阅读:1
作者:Lauren P Blair ,Zongzhi Liu ,Ramon Lorenzo D Labitigan ,Lizhen Wu ,Dinghai Zheng ,Zheng Xia ,Erica L Pearson ,Fathima I Nazeer ,Jian Cao ,Sabine M Lang ,Rachel J Rines ,Samuel G Mackintosh ,Claire L Moore ,Wei Li ,Bin Tian ,Alan J Tackett ,Qin Yan

Abstract

The complexity by which cells regulate gene and protein expression is multifaceted and intricate. Regulation of 3' untranslated region (UTR) processing of mRNA has been shown to play a critical role in development and disease. However, the process by which cells select alternative mRNA forms is not well understood. We discovered that the Saccharomyces cerevisiae lysine demethylase, Jhd2 (also known as KDM5), recruits 3'UTR processing machinery and promotes alteration of 3'UTR length for some genes in a demethylase-dependent manner. Interaction of Jhd2 with both chromatin and RNA suggests that Jhd2 affects selection of polyadenylation sites through a transcription-coupled mechanism. Furthermore, its mammalian homolog KDM5B (also known as JARID1B or PLU1), but not KDM5A (also known as JARID1A or RBP2), promotes shortening of CCND1 transcript in breast cancer cells. Consistent with these results, KDM5B expression correlates with shortened CCND1 in human breast tumor tissues. In contrast, both KDM5A and KDM5B are involved in the lengthening of DICER1. Our findings suggest both a novel role for this family of demethylases and a novel targetable mechanism for 3'UTR processing. Keywords: CCND1; DICER1; JARID1; Jhd2; KDM5; KDM5A; KDM5B; KDM5C; Lysine demethylase 5; alternative polyadenylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。