Excessive retinoic acid inhibit mouse embryonic palate mesenchymal cell growth through involvement of Smad signaling

过量视黄酸通过参与Smad信号抑制小鼠胚胎腭间充质细胞生长

阅读:8
作者:Huanhuan Zhang, Xiaozhuan Liu, Zhan Gao, Zhitao Li, Zengli Yu, Jun Yin, Yuchang Tao, Lingling Cui

Abstract

All-trans retinoic acid (atRA), the oxidative metabolite of retinoic acid (RA), is essential for palatogenesis. Overdose RA is capable of inducing cleft palate in mice and humans. Normal embryonic palatal mesenchymal (EPM) cell growth is crucial for shelf growth. Smad signaling is involved in many biological processes. However, it is not much clear if atRA could affect Smad signaling during EPM cells growth. In this study, the timed pregnant mice with maternal administration of 100 mg/kg body weight of RA by gastric intubation were cervical dislocation executed to evaluate growth changes of palatal shelves by hematoxylin and eosin (H&E) staining. At the same time, a primary mouse EPM (MEPM) cell culture model was also established. MEPM cells were treated with atRA (0.1, 0.5, 1, 5 and 10 μM) for 24, 48 and 72 h. The results indicated that the sizes of the shelves were smaller than those in control. AtRA inhibited MEPM cell growth with both increasing concentration and increasing incubation time, especially at 72 h in vitro. Moreover, atRA significantly increased the mRNA and protein expression levels of Smad7 (P < .05), but the mRNA and protein expression levels of PCNA were reduced (P < .05). We also found atRA inhibited phosphorylation of Smad2 compared with untreated group (P < .05). However, the protein and mRNA levels of Smad2 did not change both in atRA-treated and untreated group (P > .05). We demonstrated that RA induced inhibition of MEPM cell growth that could cause cleft palate partly by down-regulation of Smad pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。