A 4 bp deletion mutation in DLX3 enhances osteoblastic differentiation and bone formation in vitro

DLX3 中的 4 bp 缺失突变可增强体外成骨细胞分化和骨形成

阅读:83
作者:Sun Jin Choi, In Sun Song, Ok Hee Ryu, Sung Won Choi, P Suzanne Hart, Wells W Wu, Rong-Fong Shen, Thomas C Hart

Abstract

A 4 base-pair deletion mutation in the Distal-less 3 (DLX3) gene is etiologic for Tricho-Dento-Osseous syndrome (TDO). A cardinal feature of TDO is an increased thickness and density of bone. We tested the effects of the DLX3 gene mutation responsible for TDO on the osteoblastic differentiation of preosteoblastic MC3T3E1 cells and multipontent mesenchymal C2C12 cells. Differential expression analysis of C2C12 cells transfected with wild type DLX3 or mutant DLX3 was performed and desmin gene expression, an early myoblastic differentiation marker in mesenchymal cells, was evaluated by RT-PCR, western blot analysis, and desmin promoter transcriptional activity. Transfection of wild type DLX3 into MC3T3E1 and C2C12 cells increased alkaline phosphatase-2 activity, mineral deposition, and promoter activities of the osteocalcin and type 1 collagen genes compared to empty vector transfected cells. Transfection of mutant DLX3 into these cells further enhanced alkaline phosphatase activity, mineral deposition, and osteocalcin promoter activities, but did not further enhance type 1 collagen promoter activity. Transfection of mutant DLX3 into C2C12 cells markedly down regulated desmin gene expression, and protein expression of desmin and MyoD, while increasing protein expression of osterix and Runx2. These results demonstrate that the DLX3 deletion mutation associated with TDO enhances mesenchymal cell differentiation to an osteoblastic lineage rather than a myoblastic lineage by changing the fate of mesenchymal cells. This DLX3 mutation also accelerates the differentiation of osteoprogenitor cells to osteoblasts at later stages of osteogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。