BZL101, a phytochemical extract from the Scutellaria barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype

BZL101 是一种来自半枝莲植物的植物化学提取物,它通过依赖于癌细胞表型的独特机制来破坏人类乳腺癌和前列腺癌细胞的增殖

阅读:4
作者:Crystal N Marconett, Travis J Morgenstern, Adrianna K San Roman, Shyam N Sundar, Ankur K Singhal, Gary L Firestone

Abstract

BZL101 is an aqueous extract from the Scutellaria barbata plant shown to have anticancer properties in a variety of human cancers. In order to determine its efficacy on human reproductive cancers, we assessed the responses of two human breast cancer cell lines, estrogen sensitive MCF7 and estrogen insensitive MDA-MB-231, and of two human prostate cancer cell lines, androgen sensitive LNCaP and androgen insensitive PC3 which are human cell lines that represent early and late stage reproductive cancers. BZL101 inhibited reproductive cancer growth in all cell lines by regulating expression levels of key cell cycle components that differ with respect to the cancer cell phenotypes. In early stage estrogen sensitive MCF7 cells, BZL101 induced a G&sub1; cell cycle arrest and ablated expression of key G&sub1; cell cycle regulators Cyclin D1, CDK2 and CDK4, as well as growth factor stimulatory pathways and estrogen receptor-α expression. Transfection of luciferase reporter plasmids revealed that the loss of CDK2, CDK4 and estrogen receptor-α transcript expression resulted from the BZL-dependent ablation of promoter activities. BZL101 growth arrests early stage androgen sensitive LNCaP cells in the G&sub2;/M phase with corresponding decreases in Cyclin B1, CDK1 and androgen receptor expression. In late stage hormone insensitive breast (MDA-MB-231) and prostate (PC3) cancer cells, BZL101 induced an S phase arrest with corresponding ablations in Cyclin A2 and CDK2 expression. Our results demonstrate that BZL101 exerts phenotype specific anti-proliferative gene expression responses in human breast and prostate cancer cells, which will be valuable in the potential development of BZL-based therapeutic strategies for human reproductive cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。