Deciphering the chemical profile and pharmacological mechanism of Jinlingzi powder against bile reflux gastritis using ultra-high performance liquid chromatography coupled with Q exactive focus mass spectrometry, network pharmacology, and molecular docking

利用超高效液相色谱-Q 精确聚焦质谱法、网络药理学和分子对接技术解析金铃子散抗胆汁反流性胃炎的化学成分和药理作用机制

阅读:4
作者:Ren Hui, Zhao Lintao, Gao Kai, Yang Yuanyuan, Cui Xiaomin, H U Jing, Chen Zhiyong, L I Ye

Conclusions

We elucidated the chemical constituents and the pharmacological mechanism of JLZP in treating BRG and provided a basis for clinical application.

Methods

A BRG model was established in rats by oral administration of the model solution. JLZP was orally administered for 35 d. Residual gastric rate and tumor necrosis factor (TNF)-α, interleukin (IL)-6, and gastrin levels in the serum were measured, and stomach tissues were collected for histopathological analysis. We used ultra-high performance liquid chromatography coupled with Q Exactive Focus mass spectrometry to identify the chemical ingredients in JLZP. Then, protein-protein interaction and herb-compound-target networks were constructed to screen potential bioactive compounds and targets. Kyoto Encyclopedia of Genes and Genomes pathway analysis was then performed to elucidate the pathway involved in the JLZP-mediated treatment of BRG. After constructing the core compound-target-pathway interaction network, molecular docking was performed to study the binding free energy of core bioactive compounds and two candidate targets [RAC-alpha serine/threonine-protein kinase (AKT1) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA)].

Objective

To elucidate the chemical profile and the pharmacological mechanism by which Jinlingzi powder (, JLZP) treats bile reflux gastritis (BRG).

Results

JLZP extracts significantly promoted gastric emptying, regulating the release of cytokines (TNF-α and IL-6) and improving gastrin secretion and mucosal repair. Fifty-six compounds were tentatively characterized in JLZP. Moreover, the network pharmacology and molecular docking results showed that alkaloids and flavonoids might be the bioactive compounds in JLZP that treat BRG. JLZP might improve mucosal repair during BRG progression by modulating the phosphatidylinositol-4,5-bisphosphate 3-kinase-protein kinase B, hypoxia inducible factor-1, mitogen-activated protein kinase, forkhead box O, TNF, and IL-17 signaling pathways. Conclusions: We elucidated the chemical constituents and the pharmacological mechanism of JLZP in treating BRG and provided a basis for clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。