Anesthetic sevoflurane causes neurotoxicity differently in neonatal naïve and Alzheimer disease transgenic mice

麻醉剂七氟醚对新生儿幼稚小鼠和阿尔茨海默病转基因小鼠产生不同的神经毒性

阅读:5
作者:Yan Lu, Xu Wu, Yuanlin Dong, Zhipeng Xu, Yiying Zhang, Zhongcong Xie

Background

Recent studies have suggested that children undergoing surgery under anesthesia could be at an increased risk for the development of learning disabilities, but whether anesthetics contribute to this learning disability is unclear. Therefore, the authors set out to assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on caspase activation, apoptosis, beta-amyloid protein levels, and neuroinflammation in the brain tissues of neonatal naïve and Alzheimer disease (AD) transgenic mice.

Conclusion

These results suggest that sevoflurane may induce neurotoxicity in neonatal mice. AD transgenic mice could be more vulnerable to such neurotoxicity. These findings should promote more studies to determine the potential neurotoxicity of anesthesia in animals and humans, especially in children.

Methods

Six-day-old naïve and AD transgenic (B6.Cg-Tg[amyloid precursor protein swe, PSEN1dE9]85Dbo/J) mice were treated with sevoflurane. The mice were killed at the end of the anesthesia, and the brain tissues were harvested and then subjected to Western blot, immunocytochemistry, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction.

Results

Herein, the authors show for the first time that sevoflurane anesthesia induced caspase activation and apoptosis, altered amyloid precursor protein processing, and increased beta-amyloid protein levels in the brain tissues of neonatal mice. Furthermore, sevoflurane anesthesia led to a greater degree of neurotoxicity in the brain tissues of the AD transgenic mice when compared with naïve mice and increased tumor necrosis factor-alpha levels in the brain tissues of only the AD transgenic mice. Finally, inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate attenuated sevoflurane-induced caspase-3 activation and beta-amyloid protein accumulation in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。