Background
The STAT3/HIF-1α/VEGF pathway is associated with the development and progress of various tumors including NSCLC. The
Conclusion
RES suppresses NSCLC partly through inhibiting the expressions of STAT3, HIF-1α, and VEGF. The STAT3/HIF-1α/VEGF pathway might be a candidate drug target for developing new chemotherapy agents derived from RES for the treatment of NSCLC.
Methods
Twenty-four nude rats were randomly divided into control, NSCLC, and NSCLC+RES groups. An orthotopic rat model of NSCLC was established. The animals in the NSCLC+RES group received the same operation as the NSCLC group and were intragastrically administered RES at 250 mg/kg/day for 12 weeks. Lung tissue samples were harvested for gross tumor burden measurement, histological examinations, RT-PCR, and Western blot assays.
Results
In the NSCLC+RES group, significant decreases in lung weight index, lung tumor burden, STAT3/HIF-1α/VEGF mRNA, and protein levels were observed when compared with the NSCLC group (all P<0.05). The structural integrity of the lung was less affected and the apoptotic index was significantly higher in the NSCLC+RES group, when compared to the NSCLC group (P<0.05).
