NDUFA9 point mutations cause a variable mitochondrial complex I assembly defect

NDUFA9 点突变导致线粒体复合物 I 组装缺陷

阅读:8
作者:F Baertling, L Sánchez-Caballero, M A M van den Brand, C-W Fung, S H-S Chan, V C-N Wong, D M E Hellebrekers, I F M de Coo, J A M Smeitink, R J T Rodenburg, L G J Nijtmans

Abstract

Mitochondrial respiratory chain complex I consists of 44 different subunits and contains 3 functional modules: the Q-, the N- and the P-module. NDUFA9 is a Q-module subunit required for complex I assembly or stability. However, its role in complex I biogenesis has not been studied in patient fibroblasts. So far, a single patient carrying an NDUFA9 variant with a severe neonatally fatal phenotype has been reported. Via exome sequencing, we identified a novel homozygous NDUFA9 missense variant in another patient with a milder phenotype including childhood-onset progressive generalized dystonia and axonal peripheral neuropathy. We performed complex I assembly analysis using primary skin fibroblasts of both patients. Reduced complex I abundance and an accumulation of Q-module subassemblies were present in both patients but more pronounced in the severe clinical phenotype patient. The latter displayed additional accumulation of P-module subassemblies, which was not present in the milder-phenotype patient. Lentiviral complementation of both patient fibroblast cell lines with wild-type NDUFA9 rescued complex I deficiency and the assembly defects. Our report further characterizes the phenotypic spectrum of NDUFA9 deficiency and demonstrates that the severity of the clinical phenotype correlates with the severity of the effects of the different NDUFA9 variants on complex I assembly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。