Energy-saving optimization of the parallel chillers system based on a multi-strategy improved sparrow search algorithm

基于多策略改进麻雀搜索算法的冷水机组并联系统节能优化

阅读:4
作者:Xiaodan Shao, Jiabang Yu, Ze Li, Xiaohu Yang, Bengt Sundén

Abstract

The energy usage of parallel chillers systems accounts for 25-40 % of the total energy cost of a building. In light of global warming concerns and the need for energy conservation, it is essential to distribute the load of the parallel chillers systems effectively to achieve energy savings in buildings. Accordingly, this study presents a multi-strategy improved sparrow search algorithm (MSSA) to address optimization of the optimal chillers loading (OCL) problem. The proposed algorithm augments the basic sparrow search algorithm (SSA) by introducing the Sine chaotic map, Levy flight method, and Cauchy variation to enhance diversity, avoid local optima, and increase global and local search capacities. We use 9 benchmark functions to check the performance of the proposed MSSA algorithm, and the results are better than the selected algorithms such as particle swarm algorithm (PSO), harris hawks optimization (HHO), artificial rabbit optimization (ARO) and sparrow search algorithm (SSA). In addition, MSSA is applied to two typical cases to demonstrate its performance to optimal chillers loading and the results indicate that the MSSA outperforms similar algorithms. This study validates that MSSA can provide a promising solution to resolve the OCL problem.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。