Farnesoid X receptor regulates PI3K/AKT/mTOR signaling pathway, lipid metabolism, and immune response in hybrid grouper

法呢醇 X 受体调节杂交石斑鱼的 PI3K/AKT/mTOR 信号通路、脂质代谢和免疫反应

阅读:6
作者:Jia Xu, Xinzhou Yao, Xiaoyue Li, Shiwei Xie, Shuyan Chi, Shuang Zhang, Junming Cao, Beiping Tan

Abstract

Some diseases related to lipid metabolism increase yearly in cultured fish, and the farnesoid X receptor (FXR) is a nuclear protein that plays a key role in inflammatory responses and lipid metabolism. However, the roles of FXR in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) remain poorly understood. The main objective of this study was to explore the roles of hepatic FXR in triggering the immune response and the potential functions of FXR in regulating the lipid metabolism. In the present study, the full-length sequence of fxr from hybrid grouper was cloned and characterized for the first time. Upon the Vibrio parahaemolyticus stimulation, the transcriptional level of fxr was rapidly elevated in the head kidney tissue in the early stage of infection. In vivo and vitro, activation of FXR by obeticholic acid (OA) significantly increased the concentrations and mRNA levels of hepatic inflammatory cytokines. These effects were inversed when FXR was inhibited by guggulsterone (GU). Moreover, the activation of FXR to suppress the PI3K/AKT/mTOR signaling pathway improves hepatic lipid metabolism and reduces hepatic lipid accumulation in vivo and vitro. In addition, the inhibition of FXR activated the PI3K/AKT/mTOR pathway, decreased the lipolysis and increased the lipogenesis, and subsequently increased the lipid accumulation in fish. These results revealed the positive roles of FXR in triggering immune responses and improving lipid metabolism and accumulation in hybrid grouper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。