Sulindac-derived retinoid X receptor-α modulator attenuates atherosclerotic plaque progression and destabilization in ApoE-/- mice

舒林酸衍生的类视黄酸 X 受体-α 调节剂可减轻 ApoE-/- 小鼠的动脉粥样硬化斑块进展和不稳定

阅读:5
作者:Linghong Shen, Zhe Sun, Peng Nie, Ruosen Yuan, Zhaohua Cai, Caizhe Wu, Liuhua Hu, Shuxuan Jin, Hu Zhou, Xiaokun Zhang, Ben He

Background and purpose

Atherosclerosis is a chronic inflammatory disease, and retinoid X receptor-α (RXRα) is an intriguing anti-atherosclerosis target. This study investigated whether and how an RXRα modulator, K-80003, derived from a non-steroidal anti-inflammatory drug attenuates atherosclerotic plaque progression and destabilization. Experimental approach: Our previously established ApoE-/- mouse model of carotid vulnerable plaque progression was treated with K-80003 or vehicle for 4 or 8 weeks. Samples of carotid arteries and serum were collected to determine atherosclerotic lesion size, histological features, expression of related proteins, and lipid profiles. In vitro studies were carried out in 7-ketocholesterol (7-KC)-stimulated macrophages treated with or without K-80003. Key

Purpose

Atherosclerosis is a chronic inflammatory disease, and retinoid X receptor-α (RXRα) is an intriguing anti-atherosclerosis target. This study investigated whether and how an RXRα modulator, K-80003, derived from a non-steroidal anti-inflammatory drug attenuates atherosclerotic plaque progression and destabilization. Experimental approach: Our previously established ApoE-/- mouse model of carotid vulnerable plaque progression was treated with K-80003 or vehicle for 4 or 8 weeks. Samples of carotid arteries and serum were collected to determine atherosclerotic lesion size, histological features, expression of related proteins, and lipid profiles. In vitro studies were carried out in 7-ketocholesterol (7-KC)-stimulated macrophages treated with or without K-80003. Key

Results

K-80003 significantly reduced lesion size, plaque rupture, macrophage infiltration, and inflammatory cytokine levels. Plaque macrophages positive for nuclear p65 (RelA) NF-κB subunit were markedly reduced after K-80003 treatment. Also, K-80003 treatment inhibited 7-KC-induced p65 nuclear translocation, IκBα degradation, and transcription of NF-κB target genes. In addition, K-80003 inhibited NF-κB pathway mainly through the reduction of p62/sequestosome 1 (SQSTM1), probably due to promotion of autophagic flux by K-80003. Mechanistically, cytoplasmic localization of RXRα was associated with decreased autophagic flux. Increasing cytoplasmic RXRα expression by overexpression of RXRα/385 mutant decreased autophagic flux in RAW264.7 cells. Finally, K-80003 strongly inhibited 7-KC-induced RXRα cytoplasmic translocation. Conclusions and implications: K-80003 suppressed atherosclerotic plaque progression and destabilization by promoting macrophage autophagic flux and consequently inhibited the p62/SQSTM1-mediated NF-κB proinflammatory pathway. Thus, targeting RXRα-mediated autophagy-inflammation axis by its noncanonical modulator may represent a promising strategy to treat atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。