Zinc oxide nanoparticles-induced testis damage at single-cell resolution: Depletion of spermatogonia reservoir and disorder of Sertoli cell homeostasis

单细胞分辨率下氧化锌纳米粒子引起的睾丸损伤:精原细胞库的耗竭和塞托利细胞稳态的紊乱

阅读:4
作者:Tong Chen, Lin Zhang, Liangyu Yao, Jiaochen Luan, Xiang Zhou, Rong Cong, Xuejiang Guo, Chao Qin, Ninghong Song

Abstract

The widespread application of zinc oxide nanoparticles (ZnO NPs) in our daily life has initiated an enhanced awareness of their biosafety concern. An incredible boom of evidence of organismal disorder has accumulated for ZnO NPs, yet there has been no relevant study at the single-cell level. Here, we profiled > 28,000 single-cell transcriptomes and assayed > 25,000 genes in testicular tissues from two healthy Sprague Dawley (SD) rats and two SD rats orally exposed to ZnO NPs. We identified 10 cell types in the rat testis. ZnO NPs had more deleterious effects on spermatogonia, Sertoli cells, and macrophages than on the other cell types. Cell-cell communication analysis indicated a sharp decrease of interaction intensity for all cell types except macrophages in the ZnO NPs group than in the control group. Interestingly, two distinct maturation states of spermatogonia were detected during pseudotime analysis, and ZnO NPs induced reservoir exhaustion of undifferentiated spermatogonia. Mechanically, ZnO NPs triggered fatty acid accumulation in GC-1 cells through protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling and peroxisome proliferator-activated receptor alpha (PPARα)/acyl-CoA oxidase 1 (Acox1) axis, contributing to cell apoptosis. In terms of Sertoli cells, downregulated genes were highly enriched for tight junction. In vitro and in vivo experiments verified that ZnO NPs disrupted blood-testis barrier formation and growth factors synthesis, which subsequently inhibited the proliferation and induced the apoptosis of spermatogonia. As for the macrophages, ZnO NPs activated oxidative stress of Raw264.7 cells through nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and promoted cell apoptosis through extracellular signal-regulated kinase (ERK) 1/2 pathway. Collectively, our work reveals the cell type-specific and cellularly heterogenetic mechanism of ZnO NPs-induced testis damage and paves the path for identifying putative biomarkers and therapeutics against this disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。