Artesunate ameliorates lung fibrosis via inhibiting the Notch signaling pathway

青蒿琥酯通过抑制 Notch 信号通路改善肺纤维化

阅读:5
作者:Yujuan Liu, Guojin Huang, Biwen Mo, Changming Wang

Abstract

The present study aimed to determine the underlying molecular mechanism of the antifibrotic effect of artesunate in pulmonary fibrosis (PF). Primary lung fibroblasts were isolated from the lung tissues of rats, and treated with artesunate (8 µg/ml) and transforming growth factor (TGF)-β1 (5 ng/ml). For in vivo experiments, the rats were administered bleomycin intratracheally, followed by daily intraperitoneal artesunate injections for 27 days. Western blotting, and immunohistochemical and immunofluorescent staining were used to assess the expression of key components of the Notch signaling pathway, including α-smooth muscle actin (α-SMA) and type IV collagen. Artesunate (8 µg/ml) was identified to inhibit TGF-β1-induced α-SMA and collagen protein expression, and repress the Notch signaling pathway, in primary lung fibroblasts. Downregulation of α-SMA and collagen by artesunate was associated with inhibition of the Notch signaling pathway. The daily intraperitoneal injection of artesunate (1 mg/kg) in rats was determined to inhibit bleomycin-induced overexpression of α-SMA and type IV collagen proteins, and inhibit the Notch signaling pathway, in lung tissues. In conclusion, the results of the current study indicate that artesunate inhibits the TGF-β1-induced differentiation of rat primary lung fibroblasts into myofibroblasts and ameliorates bleomycin-induced PF. In addition, the results of the present study suggest that the underlying molecular mechanism for these effects of artesunate is repression of the Notch signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。