De novo transcriptome analysis shows differential expression of genes in salivary glands of edible bird's nest producing swiftlets

从头转录组分析显示食用燕窝金丝燕唾液腺中基因的差异表达

阅读:5
作者:Q H Looi, H Amin, I Aini, M Zuki, A R Omar

Background

Edible bird's nest (EBN), produced from solidified saliva secretions of specific swiftlet species during the breeding season, is one of the most valuable animal by-products in the world. The composition and medicinal benefits of EBN have been extensively studied, however, genomic and transcriptomic studies of the salivary glands of these birds have not been conducted.

Conclusions

Transcriptomic analysis of salivary glands of different swiftlet species reveal differential expressions of candidate genes that are involved in salivary gland development and in the biosynthesis of various bioactive compounds found in EBN.

Results

The study described the transcriptomes of salivary glands from three swiftlet species (28 samples) generated by RNASeq. A total of 14,835 annotated genes and 428 unmapped genes were cataloged. The current study investigated the genes and pathways that are associated with the development of salivary gland and EBN composition. Differential expression and pathway enrichment analysis indicated that the expression of CREB3L2 and several signaling pathways involved in salivary gland development, namely, the EGFR, BMP, and MAPK signaling pathways, were up-regulated in swiftlets producing white EBN (Aerodramus fuciphagus) and black EBN (Aerodramus maximus) compared with non-EBN-producing swiftlets (Apus affinis). Furthermore, MGAT, an essential gene for the biosynthesis of N-acetylneuraminic acid (sialic acid), was highly expressed in both white- and black-nest swiftlets compared to non-EBN-producing swiftlets. Interspecies comparison between Aerodramus fuciphagus and Aerodramus maximus indicated that the genes involved in N-acetylneuraminic and fatty acid synthesis were up-regulated in Aerodramus fuciphagus, while alanine and aspartate synthesis pathways were up-regulated in Aerodramus maximus. Furthermore, gender-based analysis revealed that N-glycan trimming pathway was significantly up-regulated in male Aerodramus fuciphagus from its natural habitat (cave) compared to their female counterpart. Conclusions: Transcriptomic analysis of salivary glands of different swiftlet species reveal differential expressions of candidate genes that are involved in salivary gland development and in the biosynthesis of various bioactive compounds found in EBN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。