SIRPalpha1 receptors interfere with the EGFRvIII signalosome to inhibit glioblastoma cell transformation and migration

SIRPalpha1受体干扰EGFRvIII信号体,抑制胶质母细胞瘤细胞转化和迁移

阅读:8
作者:G S Kapoor, D M O'Rourke

Abstract

EGFRvIII, a frequent genetic alteration of the epidermal growth factor receptor (EGFR), has been shown to increase the migratory potential of tumor cells and normal fibroblasts. Previously, we showed that signal regulatory protein alpha1 (SIRPalpha1) receptors interact with SHP-2 to inhibit wild-type (wt) EGFR-mediated tumor migration, survival and cell transformation. However, the effects of SIRPalpha1 inhibitory receptors on EGFRvIII-mediated phenotypes are unclear. The aim of this study was to investigate the effect of SIRPalpha1 receptor on the EGFRvIII signalosome and phenotypes. Overexpression of SIRPalpha1 in U87MG.EGFRvIII cells inhibited transformation and migration in a MAPK-dependent manner, and is independent of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. We observed reduced EGFRvIII/SHP-2/Gab1/Grb2/Sos-1 interaction and enhanced SIRP/SHP-2 association in U87MG.EGFRvIII/SIRPalpha1 cells when compared with empty vector control cells. Interestingly, SIRPalpha1 overexpression differentially modulated SHP-2 phosphorylation at tyrosyl 542 and 580 residues, which may regulate Erk1/2 activity and the EGFRvIII phenotype. In addition, SIRPalpha1-expressing cells exhibited reduced focal adhesion kinase (FAK) phosphorylation and its recruitment to the EGFRvIII/Grb2/Sos-1/Gab1/SHP-2 complex. Collectively, our data indicate that SIRPalpha1 specifically affects the SHP-2/FAK/Grb2/Sos-1/MAPK activation loop to downmodulate EGFRvIII-mediated migration and transformation. Further understanding of the molecular interactions between the SIRPalpha1 inhibitory receptor and the EGFRvIII signalosome may facilitate the identification of novel targets to inhibit the EGFRvIII glioblastoma phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。