Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine

过度磷酸化的 Tau 会引起细胞内应激反应,而阿扑吗啡可缓解这种反应

阅读:5
作者:Zhenfeng Song, Kuang-Wei Wang, Hsiao-Tien Chien Hagar, Hong-Ru Chen, Chia-Yi Kuan, Kezhong Zhang, Min-Hao Kuo

Abstract

Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。