Cardioprotective function of sclerostin by reducing calcium deposition, proliferation, and apoptosis in human vascular smooth muscle cells

硬化蛋白通过减少人血管平滑肌细胞中的钙沉积、增殖和细胞凋亡发挥心脏保护作用

阅读:5
作者:Sheila González-Salvatierra, Cristina García-Fontana #, Jesus Lacal, Francisco Andújar-Vera, Luis Martínez-Heredia, Raquel Sanabria-de la Torre, María Ferrer-Millán, Enrique Moratalla-Aranda, Manuel Muñoz-Torres #, Beatriz García-Fontana

Background

Sclerostin is an inhibitor of the Wnt/b-catenin pathway, which regulates bone formation, and can be expressed in vascular smooth muscle cells (VSMCs). Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease (CVD) and increased serum and tissue expression of sclerostin. However, whether the role of sclerostin is detrimental or protective in the development of CVD is unknown. Therefore, our aims are to determine the level of sclerostin in T2D patients with/without CVD and in controls, both at serum and vascular tissue, and to analyze the role of sclerostin in VSMCs under calcified environments.

Conclusions

Sclerostin could play a protective role in the development of atherosclerosis in T2D patients by reducing calcium deposits, decreasing proliferation and inflammation, and promoting cell survival in VSMCs under calcifying conditions. Therefore, considering the bone-vascular axis, treatment with anti-sclerostin for bone disease should be used with caution.

Methods

Cross-sectional study including 121 controls and 139 T2D patients with/without CVD (48/91). Sclerostin levels in serum were determined by ELISA, and sclerostin expression was analyzed by RT-qPCR and immunohistochemistry in calcified and non-calcified artery of lower limb from T2D patients (n = 7) and controls (n = 3). In vitro experiments were performed in VSMCs (mock and sclerostin overexpression) under calcifying conditions analyzing the sclerostin function by determination of calcium and phosphate concentrations, and quantification of calcium deposits by Alizarin Red. Proliferation and apoptosis were analyzed by MTT assay and flow cytometry, respectively. The regulation of the expression of genes involved in bone metabolism was determined by RT-qPCR.

Results

A significant increase in serum sclerostin levels in T2D patients with CVD compared to T2D patients without CVD and controls (p < 0.001) was observed. Moreover, higher circulating sclerostin levels were independently associated with CVD in T2D patients. Increased sclerostin expression was observed in calcified arteries of T2D patients compared to non-calcified arteries of controls (p = 0.003). In vitro experiments using VSMCs under calcified conditions, revealed that sclerostin overexpression reduced intracellular calcium (p = 0.001), calcium deposits (p < 0.001), cell proliferation (p < 0.001) and promoted cell survival (p = 0.015). Furthermore, sclerostin overexpression exhibited up-regulation of ALPL (p = 0.009), RUNX2 (p = 0.001) and COX2 (p = 0.003) and down-regulation of inflammatory genes, such as, IL1β (p = 0.005), IL6 (p = 0.001) and IL8 (p = 0.003). Conclusions: Sclerostin could play a protective role in the development of atherosclerosis in T2D patients by reducing calcium deposits, decreasing proliferation and inflammation, and promoting cell survival in VSMCs under calcifying conditions. Therefore, considering the bone-vascular axis, treatment with anti-sclerostin for bone disease should be used with caution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。