Elastocapillary self-assembled neurotassels for stable neural activity recordings

弹性毛细管自组装神经流苏用于稳定的神经活动记录

阅读:5
作者:S Guan, J Wang, X Gu, Y Zhao, R Hou, H Fan, L Zou, L Gao, M Du, C Li, Y Fang

Abstract

Implantable neural probes that are mechanically compliant with brain tissue offer important opportunities for stable neural interfaces in both basic neuroscience and clinical applications. Here, we developed a Neurotassel consisting of an array of flexible and high-aspect ratio microelectrode filaments. A Neurotassel can spontaneously assemble into a thin and implantable fiber through elastocapillary interactions when withdrawn from a molten, tissue-dissolvable polymer. Chronically implanted Neurotassels elicited minimal neuronal cell loss in the brain and enabled stable activity recordings of the same population of neurons in mice learning to perform a task. Moreover, Neurotassels can be readily scaled up to 1024 microelectrode filaments, each with a neurite-scale cross-sectional footprint of 3 × 1.5 μm2, to form implantable fibers with a total diameter of ~100 μm. With their ultrasmall sizes, high flexibility, and scalability, Neurotassels offer a new approach for stable neural activity recording and neuroprosthetics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。